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The process of high-speed energy transfer in media with allowance for the effects of the internal structure is
considered in the context of nonequilibrium statistical mechanics and the theory of nonlinear operator sys-
tems. The self-consistent nonlocal-hydrodynamic approach proposed enables one to introduce multiple scales
and multiple stages of the processes of exchange of momentum and energy into the continuous description of
a medium. Large-scale fluctuations transferring heat in a wave manner are generated in the medium at the
initial stage of rapid heating. The measurable characteristic of these fluctuations, i.e., the dispersion of mass
velocity, has been introduced into the nonequilibrium equations of state of the medium. The mechanism of
regular heat conduction is established in the medium at the final stage of the process, and a synergetic for-
mation of new structures occurs in the interval.

Description of High-Speed Processes. For correct description of the processes of transfer of heat in media
with a complex internal structure, one must consider the process of multistage energy exchange between different de-
grees of freedom and structural elements of a medium of different scale levels. The energy is transferred from a mac-
roscopic scale level to a microscopic level of motion of individual atoms and molecules, i.e., the mechanical energy of
motion of the medium’s elements dissipates to a thermal form. If a medium has a complex internal structure and the
scales of its elements refer to the so-called mesoscopic level (intermediate between the macro- and microlevels), before
the beginning of dissipation the energy is transferred to mesoscopic degrees of freedom; it passes to increasingly
smaller-scale processes until it finally reaches the microscopic scales. Thus, the mesoscopic range of the degrees of
freedom acts as an energy buffer between the macro- and microscopic processes.

It has been established experimentally [1] that deformation of a medium does not immediately lead to its
heating due to viscous dissipation, and the process of heat conduction (diffusion of heat) becomes steady-state at the
final stage of multistage energy exchange. In the experiments on shock loading of materials, it was found that before
the mechanical energy begins to dissipate to heat, large-scale fluctuations begin to be generated in the medium, where
the process of formation of new internal structures subsequently begins (these structures can be referred to the
mesoscopic level [2–4]).

These facts demonstrate that with high velocities and strong energy fluxes the process of multiscale energy
can be nonmonotone due to the self-organization processes leading to the occurrence of new large-scale structures as
a result of the collective interaction of the elements of the primary structure of a medium. It is noteworthy that, under
the conditions of strong nonequilibrium, we observe structure formation even in the initially homogeneous media. For
example, the occurrence of turbulence with high velocities of flow represents a synergetic process of formation of vor-
tex structures and large-scale fluctuations [5]. A similar situation actually holds in shock loading of metals, where both
shear and rotational structures frozen into the medium have been found after the passage of the wave front [2–4].
Large-scale fluctuations of the macroscopic velocity, which have been recorded inside the wave front, first grow and
then decay. If velocity fluctuations decay inside the wave front, the amplitude of the wave does not decrease. This
means that the process of energy exchange between the macro- and mesoscopic levels inside the front is reversible,
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and the energy from the mesolevel returns to the macrolevel almost without loss but with a certain delay. If the fluc-
tuations do not manage to decay inside the front, part of their energy is irrevocably lost by formation of irreversible
structures left behind the wave front whose amplitude decreases [6]. The quantitative characteristic of these fluctuations
is the experimentally measurable dispersion of velocity under nonequilibrium conditions which acts as the temperature
of mesoscopic degrees of freedom. The notions themselves of temperature, heat conduction, and heat flux away from
thermodynamic equilibrium necessitate total redefinition.

Let us enumerate the basic features of high-speed processes without allowance for which we cannot describe
them correctly:

(1) multiple scales of wave and dissipative structures;
(2) anisotropy related to the polarization properties of vortex systems and the asymmetry of the viscous-stress

tensor and to the propagation of waves from interphase and internal boundaries;
(3) spatial order of the structures generated by both the pulsations at different points of the system and their

synchronization;
(4) occurrence of a long-range or integral feedback (allowance for the influence of the internal structure of a

medium on its mechanical properties) enhancing the degree of nonlinearity of the system;
(5) dependence of the effective coefficients of transfer on the regime and geometry of flow and on the dis-

tance to solid boundaries.
All these features are a direct consequence of the spatial nonlocality and memory of the structures, which in

turn are generated by a substantial nonequilibrium of the processes of transfer in high-speed flows of media. However
the thermodynamics of inhomogeneous media under the conditions of an arbitrary degree of nonequilibrium has not
been developed at present. Hence follows all the problems related to their description [5] (we are dealing with them
below).

The first problem arises even in deriving macroscopic balance equations for media with an internal structure.
The most general integral balance equations which hold true without any limitations on the character of the internal
structure of a medium include the boundary conditions of interaction of an open system with its surroundings. Deriva-
tion of differential balance equations is limited by the condition that the linear scale of the medium’s internal structure
λ is negligible as compared to the characteristic scale of flow L: λ << L, L C  a ⁄ ∇ a . Unlike the integral equations,
the differential equations already do not contain boundary effects and the boundary conditions are imposed on the sys-
tem irrespective of the equations.

The second problem is related to the fact that the balance equations are open and they necessitate the intro-
duction of additional hypotheses to close them at the macroscopic level of description. Their closure within the frame-
work of the linear thermodynamics of irreversible processes of transfer, which holds true near the local thermodynamic
equilibrium, leads to classical Navier–Stokes equations.

However, with enhancement of the momentum and energy fluxes through the boundaries of the region, i.e.,
under nonequilibrium conditions, the interaction of the system with the boundaries gives rise to boundary layers of dif-
ferent kinds in which the values of the friction and the heat transfer become different from those computed from the
Navier–Stokes equations. If the wall layer can be considered to be thin, the nonequilibrium effects of interaction can
be included in these equations as additional terms attributed to the momentum and energy fluxes from the boundary
surface:

ρ 
∂v
∂t

 + ρ (v⋅∇)  v = − ∇ p − ∇⋅ P
N−S

 + δ (r − rb) ∇ ⋅(P
N−S

 − P) , (1)

ρ 
∂H

∂t
 + ρ (v⋅∇)  H = − ∇⋅( v⋅PN−S

 + q
N−S) + δ (r − rb) ∇⋅( v⋅PN−S

 − v⋅P + q
N−S

 − q) . (2)

With increase in the degree of nonequilibrium the wall-layer thickness can increase, covering the entire flow;
then the direct influence of the boundary extends deep into the region to finite distances. This means that continuous
functions decaying with distance from the boundary will appear in the last terms instead of the δ functions. The oc-
currence of the wall layer characterized by thicknesses of the order of O(λ) leads to difficulties in description of the
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system in the space of functions of a single analytical structure, including the description with the use of the apparatus
of differential equations.

The next scope of problems is related to the multiple scales of the processes of transfer under nonequilibrium
conditions. High-speed processes in general, just as turbulent motions, initiate a vast number of degrees of freedom at
different scale levels. Ordered macroscopic motion which is described by the average field quantities stands out against
the fluctuation motion. The main problems arising in averaging transfer equations involve their nonlinearity and selec-
tion of the characteristic volume. The latter difficulty is related to the introduction of the averaging scale with rapid
change in the fluctuation scales and to allowance for the dependence on the symmetry properties of the volume se-
lected.

In the general case, the momentum and energy fluxes do not coincide with the stress tensor and the vector of
the heat flux in the Navier–Stokes approximation if the effects of the internal structure of the medium manifest them-
selves. A contribution to these fluxes, among other things, is made by the fluctuations of the mesoscopic scale level.

The role of the temperature in the nonequilibrium state is played by the spherical component D of the tensor
of the dispersion of the average velocity Dij = svivj − svivjtt, which is attributed to the velocity fluctuations of differ-
ent scale levels, including those considered to be large-scale as compared to the thermal fluctuations. The components
of the tensor Dij(r, t) can differ in directions as a consequence of the anisotropy of the nonequilibrium system. Fur-
thermore, since the scales of mesoscopic elements can rapidly change, the mass of an element also changes. Therefore,
one must introduce the mesoelement-momentum distribution instead of the velocity-distribution function [7]. Then the
quasiequilibrium distribution function [8] of the medium’s mesoelements by momentum takes the form

f0 (p, r, t) = (πρ (r, t) D)−3 ⁄ 2 exp 









−  ∑ 

i=1

3

 
(pi − ρvi (r, t))

2

ρD (r, t)










 . (3)

Expression (3) describes reversible transfer processes, which, however, can occur under nonequilibrium conditions [8].
Such a quasiequilibrium state of the system means that the functional relations of equilibrium thermodynamics hold
under nonequilibrium conditions but the notions of temperature and pressure become statistical, losing their thermody-
namic meaning. For example, (3) determines the nonequilibrium equation of state generalizing the notion of hydrostatic
pressure to high-speed processes:

p = Rf ρD , (4)

where RfD → RT.
When the hydrostatic pressure has not yet formed in the medium, fluctuation pressure caused by the large-

scale fluctuations of the mass velocity appears. In the case of the presence of just thermal fluctuations, which takes
place near thermodynamic equilibrium, (4) takes an equilibrium form analogous to the equation of state of an ideal
gas.

The employment of the first law of thermodynamics enables us to derive the balance equation for the average
entropy density s:

ρ 




∂s

∂t
 + (v⋅∇)  s




 + ∇⋅ Js = σ , (5)

where the average density of the entropy flux is Js = 
JE

√D
, and the density of the entropy source, i.e., production of

entropy in the system, is nonnegative according to the second law of thermodynamics σ = ∑ 
k

JkXk ≥ 0, where Jk are

the average densities of thermodynamic sources and Xk are the conjugate thermodynamic forces. It is noteworthy that

the solution of Eq. (5) under nonequilibrium conditions does not satisfy the Boltzmann determination of the entropy in

terms of the distribution function s = −k ∫ f ln fdp.
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Self-Consistent Nonlocal-Hydrodynamic Approach to Description of Nonequilibrium Processes of Trans-
fer. Continuum mechanics is, in principle, inapplicable to description of nonequilibrium processes in inhomogeneous
media, and it is impossible to prescribe a rapidly changing interaction between structural elements of different scale
levels in kinetic description. Therefore, we have developed a new self-consistent nonlocal-hydrodynamic approach on
the basis of nonequilibrium statistical mechanics and the mechanics of resonance systems; this approach enables one to
determine in dynamics the size and type of structures in the entire range from kinetic scales to macroscopic scales and
their influence on the hydrodynamic characteristics of the process [5–7, 9–13]. Shortage of information on the interac-
tion of the structural elements of a medium is compensated for with the integral information on the entire system. The
integro-differential and functional equations obtained represent a system with feedback which allows control in terms
of the integral and boundary conditions. Taking successive account of the dynamics of development of spatial correla-
tions between the structural elements of the medium enables one to correctly investigate the occurrence of structural
transitions in an open system.

In nonequilibrium statistical mechanics [8, 14], it has been shown that macroscopic balance equations are not
completely localized under the conditions of substantial nonequilibrium. Nonlocal hydrodynamic equations with mem-
ory are obtained from the first principles [8, 14]. The integral terms in these equations are determined by the spatially
nonlocal and delayed relations between the dissipative fluxes J and the thermodynamic forces X (gradients of hydro-
dynamic densities):

J(r, t) = ∫ 
−∞

t

dt′ ∫ 
V

dr′ R (r, r′, t, t′) X (r′, t′) . (6)

The relaxation kernels of transfer ℜ (r, r′, t, t′) which generalize the transfer coefficients to the conditions of substantial
nonequilibrium represent in the general case the unknown functionals of hydrodynamic densities and their gradients.

Based on the nonlocal and delayed hydrodynamic equations, we have constructed self-consistent models of re-
laxation kernels with parameters that are related to the hydrodynamic quantities sought using the integral and boundary
conditions [5–7, 9–13].

The self-consistent nonlocal formulation of the boundary-value problems by standard methods can be reduced
to a nonlinear operator system of special form characteristic of a wide scope of resonance problems of mechanics [15,
16]. The apparatus of self-consistent nonlocal equations describes the evolution of open nonequilibrium systems ac-
tively interacting with the surroundings.

The approach developed as a universal, efficient, and economical tool of theoretical investigation of nonequili-
brium processes of transfer in real media was applied to solution of a number of dynamic problems where the mecha-
nism of heat conduction has not yet become steady-state.

Nonstationary Heating of a Medium near a Plane Boundary. Let us consider the problem of nonstationary
heating of a medium near a plane surface of another medium having temperature Tw(t). The heat flux on the surface
qw(t) lying in the plane y = 0 is directed normally to the surface.

By analogy with the thermodynamic equation relating the internal energy and the temperature in the state of
local thermodynamic equilibrium, we determine the density of the internal energy of the medium E in terms of the
dispersion of the macroscopic velocity D which acts as the temperature in nonequilibrium processes. Then we have E
= cfD, where the energy capacity of fluctuations excited by the nonstationary transfer of heat in the medium is cf =
∂E ⁄ ∂D.

Within the framework of the self-consistent nonlocal-hydrodynamic approach, the equation of balance of the
internal energy of the medium is written as follows [5, 7, 9]:

∂cfD

∂t
 = κ (1 + α) 

∂

∂y
 ∫ 
0

∞
dy

ε
 exp 




− 
π

ε2 (y′ − y − γ)



 
∂D

∂y
 (y′, t) . (7)

As the component of the kernel of transfer of the internal energy along the y axis normal to the surface ℜ y(y, y′, t),
we have employed the model expression allowing just for the nonlocal correlations along the normal to the plate and
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containing the following parameters: α, correction to the effective relative thermal conductivity of the medium due to
correlations and to the large-scale fluctuations generated by them; γ, polymerization shift due to the interaction of
large-scale structural formations in the medium with a solid boundary; ε, average radius of spatial correlations.

Under nearly equilibrium conditions, the process of heat conduction is purely diffusion and it is described by
the parabolic heat-conduction equation obtained from Eq. (7) in the limit ε → 0, when there are no nonlocal correla-
tions in the medium. The nonlocal kernel becomes the δ function (1/ε) exp 



 −(π ⁄ ε2)(y′ − y − γ)2



  → δ(y′ − y), while the

equation of balance of the internal energy takes the known form

∂T

∂t
 = κ 

∂2
T

∂y
2  + Tw (t) (1 − θ (y)) . (8)

In the limit of frozen relaxation ε → ∞, i.e., on comparatively short characteristic times, one must take into account

the finiteness of the velocity of propagation of disturbances in the medium C. Then the integral ∫ 
0

∞

dy = ∫ 
0

Ct

dy + ∫ 
Ct

∞

dy  =

∫ 
0

Ct

dy + 0 in Eq. (8) will become the integral with a variable upper limit, exp 


 −(π ⁄ ε2)(y′ − y − γ)2  → 1, and (7) differ-

entiated with respect to time changes to a wave equation describing the nondissipative mechanism of transfer of the
energy of large-scale fluctuations of the velocity of the medium’s elements at the mesoscopic scale level (interacting
with each other as elastic bodies) [6, 17]:

∂2
D

∂t
2

 = 
κC

ε
 
∂2

D

∂y
2

 ,   
κC

ε
 = Pr cpC

2
 ,   κ = Prcp µ ,   µ = C

2
tr ,   ε = Ctr . (9)

According to (9), in the limit of frozen relaxation tr → ∞, the energy is propagating with a velocity proportional to the
velocity of elastic disturbances C in the form of a wave of large-scale fluctuations and it does not dissipate to heat.
This means that such a process is reversible.

Under the conditions of substantial nonequilibrium, when one cannot disregard spatial correlations with a fi-
nite radius ε, the process of heat conduction begins to form but it still preserves its wave properties. In particular, in
the case of a simple exponential kernel and with allowance for the finiteness of the velocity of propagation of distur-
bances, Eq. (7) yields a hyperbolic-type telegraph equation of heat conduction. The proportions between two types of
energy transfer depend on the scale of nonlocal correlations: the larger the quantity ε, the higher the fraction of the
wave process in transfer of heat. It is clear that wave properties corresponding to the large degree of correlation of the
behavior of the medium must prevail in the pulsed regime, and prolonged heat exchange leads to the establishment of
quasistationary regimes, predominantly with a diffusion transfer of heat. In the case of strong external energy fluxes,
the space-time correlations initiate a synergetic process of formation of the internal structure of the medium at mesos-
cale levels. The process of energy exchange at the mesoscopic level is multistaged in time, and dissipation of mechani-
cal energy to heat is only the final stage. Therefore, it makes sense to speak of heat exchange as such only when all
the mesoscopic processes related to structure formation manage to relax and the state of the medium approaches a lo-
cally equilibrium state. If velocity fluctuations are classified by scale and thermal fluctuations are described by the
temperature while large-scale fluctuations are described by the velocity dispersion, Eq. (7) will become the nonlocal
equation for the nonequilibrium temperature with a volumetric source caused by the disbalance of the large-scale fluc-
tuations:

∂T

∂t
 = κ (1 + α) 

∂

∂y
 ∫ 
0

∞
dy′

ε
 exp 




− 
π

ε2
 (y′ − y − γ)




 
∂T

∂y′
 + I (t) , (10)

where

1192



I (t) = − 







∂cmD

∂t
 − κ (1 + α) 

∂

∂y
 ∫ 
0

∞
dy′

ε
 exp 




− 
π

ε2 (y′ − y − γ)



 
∂D

∂y′







 .

If the relative energy capacity of the large-scale fluctuations is cm → 0, mesofluctuations are not excited, and the scales
of the fluctuations already formed are reduced to the point of their final dissipation. For finite values of cm part of the
macroscopic kinetic energy is transferred to the mesoscopic level at which the process of formation of mesoscopic
fluctuations and structures begins. For the condition cm → ∞ where mesofluctuations are frozen there is no energy ex-
change between the macro- and microscopic levels.

If we integrate (10) over the half-space and with respect to time, we obtain the integral energy balance in the
form

 ∫ 
0

∞

Tdy t0

t
 = ∫ 

0

t

qw (t′) dt′ + ∫ 
0

∞

dy ∫ 
t0

t

If (t′) dt′ . (11)

With a prescribed change in the heat flux at the boundary and in the total heat content of the medium, relation (11)
simply cannot be satisfied without introducing the influence of large-scale fluctuations on the high-speed process of
heat exchange.

The parameters of the nonlocal model α(t), ε(t), and γ(t) are determined in a self-consistent manner by the
boundary relations

qw (t) B qy (0, t) = − κ (1 + α) ∫ 
0

∞
dy′

ε
 exp 




− 
π

ε2 (y′ − y)2



 
∂D

∂y′
 , (12)

T
.
w (t) B 

∂T

∂t
 (0, t) = κ (1 + α) ∫ 

0

∞
dy′

ε
 
2π

ε
 (y′ − γ) exp 




− 
π
ε2 (y′ − y)2




 
∂D

∂y′
 , (13)

and by the integral condition (11). Since these functional relations describing the reaction of the medium to high-speed
heating are substantially nonlinear, the parameters of the medium are determined by them ambiguously. Such ambigu-
ity is an integral indication of nonequilibrium processes which are characterized by the multiple scales of dynamic
structures. The nonlinear relations (11)–(13) determine the discrete spectra of scales of the medium’s internal structure
near the boundary and the region of a continuous spectra away from the boundary. With change in the heating condi-
tions the discrete spectrum can change in a threshold manner with time, forming new scales of the structures, and the
continuous-spectrum region can either approach the boundary or depart from it. In the limit situations where ε → 0 and
ε → ∞, the continuous-spectrum region covers the entire half-space, pointing to the fact that the heating conditions cor-
respond to either slow diffusion heat transfer or, conversely, purely wave nondissipative transfer.

The self-consistent formulation of the problem, i.e., the equation of transfer of the internal energy (7) and
three functional relations (11)–(13) for three parameters of the model α(t), ε(t), and γ(t) determining the properties of
the internal structure of the medium (effective thermal conductivity and structural scales), enables one to restore the
dynamics of the medium’s structure from the macroscopic reaction of the medium to external heating.

Approximate Solution of the Problem. Let us solve the problem formulated on evolution of the equilibrium-
temperature field from Eq. (10) as a first approximation according to the iterative procedure developed for nonlinear
operator systems [15, 16]. For this purpose, as the solution of zero approximation, we take the discontinuous tempera-
ture profile for a structureless medium with the gradient

∂T
0

∂y
 = − 

T − ∆T

√πκt
 exp 




− 

y
2

4κt




 − ∆T (t) δ (y) . (14)
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Substituting (14) under the integrals in expressions (12) and (13), we obtain approximate relations, where the first term
describes quasistationary heating and the second term replaces the influence of the source term in Eq. (10) and deter-
mines the role of large-scale fluctuations near the heated surface [18]:

qw (t) = ρκ (1 + α) 







T − ∆T

√πκt
 ∫ 
0

∞
dy′

ε
 exp 










− 
π

ε2 (y′ − γ)2 − 
y′

2

4κt










 + 
∆T (t)
ε

 exp 









− 
πγ2

ε2

















 , (15)

T
.
w (t) = κ (1 + α) 








T − ∆T

√πκt
 ∫ 
0

∞
dy′

ε
 
2π
ε2  (y′ + γ) exp 










− 
π

ε2 (y′ − γ)2 − 
y′

2

4κt










 + 
∆T (t)
ε

 
2πγ

ε2  exp 









− 
πγ2

ε2

















 . (16)

For prescribed functions qw(t) and Tw(t) and evolution of the heat content ∫ 
0

∞

Tdy
 t0

t  or the source ∫ 
0

∞

dy ∫ 
0

t

I(t′)dt′ (in terms

of which one can easily find ∆T(t)) the nonlinear relations (11), (15), and (16) determine the spectra of the values of

the parameters α(t), ε(t), and γ(t) describing the dynamics of the medium’s internal structure. Then integration of (10)

for the known parameters and prescribed qw(t), Tw(t), and ∆T(t) describes the dynamics of temperature distribution in

the medium.
The analysis of the problem with allowance for the integral balance (11) has shown that for constant values

of qw and Tw we have the quasistationary regime of heating of a structurized medium, where ∆T = 0, and the parame-
ters of the medium’s structure α, ε, and γ are constant. If the heat flux on the surface is not proportional to the tem-
perature gradient, nonlocal correlations of finite radius, which grow with deviation of the behavior of the flux from the
Fourier law, occur in the medium. Then the transfer of heat acquires the character of a damped wave, which follows
from the nonmonotonic behavior of the temperature profiles. Otherwise the medium behaves as structureless in heating
and the profiles are described by the known solution of the problem of heat conduction in a half-space.

In rapid heating, the medium does not manage to heat up and, depending on its structure, the regime of a thin
dynamic layer occurs, in which ∆T = Tw and the parameters of the medium rapidly change with time due to the fluc-
tuation growth, which can lead to structural transitions in the intermediate situation and to the formation of new inter-
nal scales. The anisotropic growth of fluctuations near the boundary causes convection first of mesoscopic scale and
then the macroscopic transfer of mass along the normal to the surface.

It is of interest to note that, as hydrophysicists have long noticed, even such a process as seasonal variation
in the temperature in large ponds (slow on the scale of human life) represents a dynamic nonequilibrium process
which is not described by the heat-conduction equation even on the average. Stratification with a nonmonotonic behav-
ior of the temperature occurs in the medium, and a large temperature dispersion has been found in regions of the larg-
est temperature gradients. This points to the generation of large-scale velocity fluctuations which come before
macroscopic convection. The total energy balance is not satisfied without allowance for these fluctuations, since the
heat content of water substantially lags behind the total solar energy incident on the pond surface over the same pe-
riod.

NOTATION

λ, characteristic scale of the internal structure of the medium; L, characteristic scale of flow of the medium;
a, arbitrary field quantity; ρ, mass density; v, mass velocity; vi and vj, projections of the velocity onto the coordinate
axes; H, enthalpy; P, viscous-stress tensor; q, vector of the heat flux; r, radius vector of a point in the coordinate
space; t, time; t0, initial instant of time; δ, Dirac function; θ, step function; D, dispersion of the mass velocity; f, mo-
mentum-distribution function of the particles of the medium of mesoscopic scale; p, momentum of a mesoparticle; Rf,
proportionality factor in the nonequilibrium equation of state which becomes the gas constant R near the equilibrium;
cp, specific heat of the medium at constant pressure; cf and cm, total and relative specific energy capacities of
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mesofluctuations in the medium; s, entropy density; E, density of the internal energy of the medium; Js and JE, den-
sities of the entropy and internal-energy fluxes; σ, entropy-production density; J, dissipative fluxes; X, thermodynamic
forces; k, Boltzmann constant; ℜ , relaxation kernel of transfer; T, thermodynamic temperature of the medium; y,
Cartesian coordinate along the normal to the boundary surface; κ, heat capacity of the medium; α, ε, and γ, internal
parameters of the nonlocal model; C, equilibrium bulk velocity of sound in the medium; tr, characteristic relaxation
time; Pr, Prandtl number; µ, kinematic viscosity of the medium; I, source term in Eq. (10); ∆T, temperature jump in
the zero approximation. Superscripts: N–S, values of the field quantities in the Navier–Stokes approximation; 0, zero
approximation; prime, for integration variables. Subscripts: p, pressure; r, relaxation; f, fluctuation; m, mesofluctuation;
w, wall; b, boundary; i and j, projections of the vectors onto the coordinate axes; 0, initial.
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